Режимы газовой резки. Методические рекомендации по подбору технологических параметров резки. Техника ручной резки

Основными показателями режима кислородной резки являются:

Вид горючего газа;
- мощность подогревающего пламени;
- давление режущего кислорода;
- расход режущего кислорода;
- давление горючего газа;
- скорость резки.

Все эти показатели связаны с толщиной разрезаемого металла, химического состав стали, чистоты кислорода и конструкции резака.

Вид горючего газа

При газовой резке происходит подогрев металла только до температуры горения, поэтому могут использоваться все горючие газы.
Однако газы, имеющие более низкую температуру пламени, требуют большего времени на подогревметалла перед резкой. Ацетилен обеспечивает получение пламени с самой высокой температурой. Поэтому нагрев металла в начале резки с использованием ацетиленового пламени происходит значительно быстрее, чем с использованием других горючих газов. Однако при резке металла большой толщины и длинных резов относительные потери времени не таквелики, поэтому горючие газы – заменители, имеющие более низкую стоимость, также широко применяются при газовой резке. Ацетиленовое пламя наиболее эффективно использовать при газовой резке тонкого металла ив случае большого количества коротких резов, требующих подогрева детали.

Мощность подогревающего пламени

Мощность подогревающего пламени выбираетсяв зависимости от толщины разрезаемого металла. При резке сталей используется нормальное пламя. Мощность пламени определяется номером наружного наконечника.

При ручной резке обычно используется 2 номера наружного наконечника:

– для металла толщиной не более 50 мм;

Для металла толщиной 50 – 200 мм

Давление режущего кислорода

Давление режущего кислорода выбирается в зависимости от толщины разрезаемого металла. Величина давлениярежущего кислорода указывается нанаружном наконечнике, выбираемомв зависимости от толщины разрезаемого металла. Чем больше толщина металла, тем больше должно быть давление режущего кислорода.

Если давление режущего кислорода слишком маленькое, то струя кислорода не сможет выдуть шлаки с места реза и металл не будет прорезан на всю толщину.

Если давление режущего кислорода слишком большое, то расход его возрастает и разрез получается недостаточно чистым.

Расход режущего кислорода

Расход режущего кислорода должен быть достаточен для окисления линии реза. Расход кислорода зависит от величины давления режущего кислорода и диаметра отверстия внутреннего мундштука, которые выбираются в зависимости от толщины металла.

Давление горючего газа

Давление горючего газа устанавливается в пределах0,5 – 1,0 бар в зависимости от толщины металла. Чем больше толщина металла, тем больше давление горючего газа.

Скоростькислородной резки

Скорость резки должна соответствовать скорости окисления металла.

При малой скорости происходит плавление верхней кромки реза,а при большой скорости образуются не прорезанные участки и возможно нарушение непрерывности резки.

Скорость резки, в основном, зависит от толщины разрезаемого металла. А также на скорость резки оказывают влияние:

  • степень механизации процесса (ручная или машинная резка);
  • форма линии реза (прямолинейная или фигурная);
  • качество поверхности реза (разделочная, заготовительная с припуском на механическую обработку, заготовительная под сварку, чистовая)

Установлено, что уменьшение чистоты кислорода на 1% снижает скорость резки в среднем на 20%. Поэтому применять кислород чистотой ниже 99% нецелесообразно из-за снижения скорости и качества поверхности реза. Кислород должен быть чистотой 99,5% и более.

На практике необходимую скорость резки можно определить по направлению потока искр и шлака при резке.

1. Скорость резки мала; 2. Оптимальная скорость резки; 3. Скорость резки велика (3)

Обработка металлических и иных поверхностей с помощью стала неотъемлемой частью повседневной жизни в индустрии. Многие технологии видоизменились, некоторые упростились, но суть осталась прежняя – правильно подобранные режимы резания при токарной обработке обеспечивают необходимый результат. Процесс включает в себя несколько составляющих:

  • мощность;
  • частота вращения;
  • скорость;
  • глубина обработки.

Ключевые моменты изготовления

Существует ряд хитростей, которых необходимо придерживаться во время работы на токарном станке:

  • фиксация заготовки в шпиндель;
  • точение с помощью резца необходимой формы и размера. Материалом для металлорежущих основ служит сталь или иные твердосплавные кромки;
  • снятие ненужных шаров происходит за счет разных оборотов вращения резцов суппорта и непосредственно самой заготовки. Иными словами, создается дисбаланс скоростей между режущими поверхностями. Второстепенную роль играет твердость поверхности;
  • применение одной из нескольких технологий: продольная, поперечная, совмещение обеих, применение одной из них.

Виды токарных станков

Под каждую конкретную деталь используется тот или иной агрегат:

  • винторезно-токарные: группа станков, пользующихся наибольшей востребованностью при изготовлении цилиндрических деталей из черных и цветных металлов;
  • карусельно-токарные: виды агрегатов, применяемых для вытачивания деталей. Особенно больших диаметров из металлических заготовок;
  • лоботокарный станок: позволяет вытачивать детали цилиндрической и конической форм при нестандартных габаритах заготовки;
  • : изготовление детали, заготовка которой представлена в виде калиброванного прудка;
  • – числовое программное управление: новый вид оборудования, позволяющий с максимальной точностью обрабатывать различные материалы. Достичь подобного специалисты могут с помощью компьютерной регулировки технических параметров. Точение происходит с точностью до микронных долей миллиметра, что невозможно увидеть или проверить невооруженным глазом.

Подбор режимов резания

Режимы работы

Заготовка из каждого конкретного материала требует соответствия режима резки при токарной обработке. От правильности подборки зависит качество конечного изделия. Каждый профильный специалист в своей работе руководствуется следующими показателями:

  • Скорость, с которой вращается шпиндель. Главный акцент делается на вид материала: черновой или чистовой. Скорость первого несколько меньше, нежели второго. Чем выше обороты шпинделя, тем ниже подача резца. В противном случае плавление металла неизбежно. В технической терминологии это называется «возгорание» обработанной поверхности.
  • Подача – выбирается в пропорциональном соотношении со скоростью шпинделя.

Резцы подбираются исходя из вида заготовки. Выточка с помощью токарной группы самый распространенный вариант, несмотря на наличие иных видов более совершенного оборудования.

Это обосновывается невысокой стоимостью, высокой надежностью, длительным сроком эксплуатации.

Как вычисляется скорость

В инженерной среде расчет режимов резания исчисляют с помощью следующей формулы:

V = π * D * n / 1000,

V – скорость резки, исчисляемая в метрах за минуту;

D – диаметру детали или заготовки. Показатели следует преобразовать в миллиметры;

n – величина оборотов за минуту времени обрабатываемого материала;

π – константе 3,141526 (табличное число).

Иными словами, скорость резания это тот отрезок пути, который проходит заготовка за минуту времени.

Например, при диаметре 30 мм скорость резки будет равна 94 метра за минуту.

При возникновении необходимости вычислить величину оборотов, при условии определенной скорости, применяется следующая формула:

N = V *1000/ π * D

Эти величины и их расшифровка уже известны по предыдущим операциям.

Дополнительные материалы

Во время изготовления, большинство специалистов руководствуются в качестве дополнительного пособия, приведенными ниже показателями. Таблица коэффициента прочности:

Коэффициент прочности материала:

Коэффициент стойкости резца:

Третий способ вычисления скорости

  • V фактическое = L * K*60/T резания;
  • где L – длина полотна, преображенная в метры;
  • K – количество оборотов за время резания, исчисляемое в секундах.

Например, длина равна 4,4 метра, 10 оборотов, время 36 секунд, итого.

Скорость равна 74 оборота в минуту.

Видео: Понятие о процессе резания

где D - номинальный диаметр фрезы.

Порядок фрезерования

1. По диаметру фрезы, ширине фрезерования, глубине резания и подаче на один зуб, определяется скорость резания и минутная подача. Следует учитывать особые условия конкретного фрезерования: наличие или отсутствие охлаждения, особенности конструкции фрезы и т. д.
2. Произвести настройку скорости вращения шпинделя.
3. Произвести настройку подачи шпинделя.

Износ инструмента

Чем больше скорость резания, тем больше выделяется тепла и тем больше нагреваются зубья фрезы. При достижении определённой температуры режущая кромка теряет твердость, и фреза перестаёт резать. Температура, при которой фреза перестаёт резать, для разных фрез различна и зависит от материала, из которого изготовлена фреза.
В процессе работы фреза затупляется. Затупление фрезы происходит вследствие износа, вызываемого трением сходящей стружки о переднею поверхность зуба и трением задней поверхностью зуба фрезы об обрабатываемую поверхность. Трение вызывает также увеличение температуры режущего инструмента, что в свою очередь снижает твёрдость его лезвия и способствует более быстрому износу. В процессе работы фреза проходит три стадии износа:

1. Новая, острая фреза - годная к эксплуатации.
Признаки: наличие заводской смазки, нормальный цвет поверхности (без окалин), ровная одноразовая заточка.
2. Фреза с нормальным износом - фрезу далее эксплуатировать нерационально, лучше заточить.
Признаки: наступление вибрации, появление неровной (рваной) поверхности обработки и чрезмерный нагрев вследствие увеличения трения.
3. Фреза с катастрофическим износом - восстановление фрезы практически невозможно.
Признаки: визуально видно, что рабочая кромка фрезы разрушена.

Режимы резки, используемые на практике, в зависимости от обрабатываемого материала и типа фрезы

Таблица (приведенная ниже) содержит справочную информацию параметров режима резания, взятые из практики. От этих режимов рекомендуется отталкиваться при обработке различных материалов со схожими свойствами, но необязательно строго придерживаться их.

Необходимо учитывать, что на выбор режимов резания, при обработке одного и того же материала одним и тем же инструментом, влияет множество факторов, основными из которых являются: жесткость системы Станок-Приспособление-Инструмент-Деталь (СПИД), охлаждение инструмента, стратегия обработки, высота слоя, снимаемого за проход, и размер обрабатываемых элементов.

Фрезерной обработке лучше всего подвергать пластики, полученныйе литьем, т.к. у них более высокая температура плавления.
-При резке акрила и алюминия желательно для охлаждения инструмента использовать смазывающую и охлаждающую жидкость (СОЖ), в качестве СОЖ может выступать обыкновенная вода или универсальная смазка WD-40 (в баллончике).
-При резке акрила, когда подсаживается (притупляется) фреза, необходимо понизить обороты до момента, пока не пойдет колкая стружка (осторожнее с подачей при низких оборотах шпинделя - вырастает нагрузка на инструмент и соответственно вероятность его сломать).
-Для фрезеровки пластиков и мягких металлов наиболее подходящими являются однозаходные (однозубые) фрезы (желательно с полированной канавкой для отвода стружки). При использовании однозаходных фрез создаются оптимальные условия для отвода стружки и соответственно отвода тепла из зоны реза.
-При фрезеровке рекомендуется применять такую стратегию обработки, при которой идет беспрерывный съем материала со стабильной нагрузкой на инструмент.
-При фрезеровке пластиков, для улучшения качества реза, рекомендуется использовать встречное фрезерование.
-Для получения приемлемой шероховатости обрабатываемой поверхности, шаг между проходами фрезы/гравера необходимо делать равным или меньше рабочего диаметра фрезы(d)/пятна контакта гравера(T).
-Для улучшения качества обрабатываемой поверхности желательно не обрабатывать заготовку на всю глубину сразу, а оставить небольшой припуск на чистовую обработку.
-При резке мелких элементов необходимо снизить скорость резания, чтобы вырезанные элементы не откалывались в процессе обработки и не повреждались.

При выполнении разделительной кислородной резки необходимо учитывать требования, предъявляемые к точности резки и качеству поверхности реза. Большое влияние на качество реза и производительность резки оказывает подготовка металла под резку. Перед началом резки листы подают на рабочее место и укладывают на подкладки так, чтобы обеспечить беспрепятственное удаление шлаков из зоны реза. между полом и нижним листом должен быть не менее 100-150 мм. Поверхность металла перед резкой должна быть очищена. На практике окалину, ржавчину, краску и другие загрязнения удаляют с поверхности металла нагревом зоны резки газовым пламенем с последующей зачисткой стальной щеткой. Вырезаемые детали размечают металлической линейкой, чертилкой и мелом. Часто разрезаемый лист подают к рабочему месту резчика уже размеченным.

Перед началом кислородной резки газорезчик должен установить необходимое давление газов на ацетиленовом и кислородном редукторах, подобрать нужные номера наружного и внутреннего мундштуков в зависимости от вида и толщины разрезаемого металла.

Процесс кислородной резки начинают с нагрева металла в начале реза до температуры воспламенения металла в кислороде. Затем пускают режущий (происходит непрерывное окисление металла по всей толщине) и перемещают резак по линии реза.

Основными параметрами режима кислородной резки являются: мощность подогревающего пламени, давление режущего кислорода и скорость резки.

Мощность подогревающего пламени характеризуется расходом горючего газа в единицу времени и зависит от толщины разрезаемого металла. Она должна обеспечивать быстрый подогрев металла в начале резки до температуры воспламенения и необходимый его в процессе резки. Для резки металла толщиной до 300 мм применяют нормальное пламя. При резке металла больших толщин лучшие результаты получают при использовании пламени с избытком горючего (науглероживающее пламя). При этом длина видимого факела пламени (пои закрытом вентиле кислорода) должна быть больше толщины разрезаемого металла.

Выбор давления режущего кислорода зависит от толщины разрезаемого металла, размера режущего сопла и. чистоты кислорода. При увеличении давлении кислорода увеличивается его расход.

Чем чище кислород, тем меньше его расход на 1 пог. м реза. Абсолютная величина давления кислорода зависит от конструкции резака и мундштуков, величин сопротивлений в кислородоподводящей арматуре и коммуникациях.

Скорость перемещения резака должна соответствовать скорости горения металла. От скорости резки зависят устойчивость процесса и вырезаемых деталей. Малая скорость приводит к оплавлению разрезаемых , а большая - к появлению непрорезанных до конца участков реза. Скорость резки зависит от толщины и свойств участков реза. Скорость резки зависит от толщины и свойств разрезаемого металла. При резке сталей малых толщин (до 20 мм) скорость резки зависит от мощности подогревающего пламени. Например, при резке стали толщиной 5 мм около 35% тепла поступает от подогревающего пламени.

а - скорость резки мала, б - оптимальная скорость, в - скорость велика

Рисунок 1 - Характер выброса шлака

На скорость кислородной резки влияет также метод резки (ручной или машинный), форма линии реза (прямолинейная или фигурная) и вид резки (заготовительная или чистовая). Поэтому допустимые скорости резки определяют опытным путем в зависимости от толщины металла, вида и метода резки. При правильно выбранной скорости резки отставание линии реза не должно превышать 10-15% толщины разрезаемого металла.

На рисунке 1 схематически показан характер выброса шлака из разреза. Если скорость кислородной резки мала, то наблюдается отклонение пучка искр в направлении резки (рис. 1, а). При завышенной скорости резки отклонение пучка искр происходит в сторону, обратную направлению резки (рис. 1, в). Скорость перемещения резака считают нормальной, если пучок искр будет выходить почти параллельно кислородной струе (рис. 1, б).

Ширина и чистота реза зависят от способа резки. Машинная резка дает более чистые и меньшую ширину реза, чем ручная. Чем больше толщина разрезаемого металла, тем больше шероховатость кромок и ширина реза. В зависимости от толщины металла ориентировочная ширина реза составляет.

Металлообработкой лазером называют технологию, при которой происходит нагрев материала в зоне обработки с последующим разрушением лучевым потоком. Этот процесс используют при массовом производстве, а также в частных мастерских. Использование резки лазером позволило модернизировать выпуск многих деталей. Она применяется для обработки практически всех типов металлических изделий и бывает обычная, художественная и фигурная. Это разнообразие предоставляет возможность изготавливать предметы весьма необычной формы. Для разных металлических изделий применяется соответствующее оборудование, учитывающее характеристики материала. Благодаря этому выпускаются изделия необходимой конфигурации, и исключается брак.

Несмотря на то что технология относится к дорогостоящим процессам, она весьма востребована благодаря своим возможностям. Высокое качество среза и скорость процедуры проводится практически без образования отходов. Металлические кромки получаются почти идеально ровными, не требующими дополнительной механической обработки. Это позволяет получать на выходе готовое изделие, полностью пригодное к дальнейшему использованию по назначению. На представленных ниже фото показана лазерная резка различных металлов.

Технология

В специальных устройствах для резки металлов лазером главным органом является лучевая установка. Металлическая область разрушается под воздействием высокой энергетической плотности потока. Технология лазерной резки металла заключается в использовании свойств этого луча. Он имеет постоянные значения длины волны, а также частоты (монохроматичность), что обеспечивает ее стабильность. Помимо этого, небольшой пучок можно легко сконцентрировать на маленьком участке.

На этом построена система лазерной резки металла, принцип которой заключается в воздействии на материал сгустка энергии. При этом мощность потока увеличивается в десятки раз благодаря особым типам колебаний, вызывающих резонанс. На обрабатываемой области происходит нагрев до температуры плавления металлоизделия. За небольшой временной отрезок процесс плавления увеличивается и переходит на основную толщу предмета. При значительном повышении температурного значения материал может начать испаряться.

Технология резки металла на производстве выполняется двумя методами: плавлением и испарением. При этом второй способ сопровождается повышенными энергетическими затратами, что не всегда оправданно. С увеличением толщины материала качество поверхности реза ухудшается. Наиболее широко используется плавление при работе с металлоизделиями.

Оборудование для резки

Установки, в которых активно используется лазерная резка металла содержит несколько основных элементов:

  • энергетический источник;
  • блок специальных зеркал (оптический резонатор);
  • рабочий орган, создающий лучевой поток.

По мощности рабочего органа подразделяются и сами установки:

  • до 6 кВт – твердотельные лазеры для резки металла;
  • свыше 6 и до 20 кВт – аппараты газового принципа работы;
  • от 20 до 100 кВт – устройства газодинамического типа.

Твердотельные установки используют рубин или же специально обработанное стекло, содержащее флюорит кальция в качестве добавочного компонента. Мощный импульс энергии создается за доли секунды, а работа ведется как в непрерывном режиме среза, так и в прерывистом.

Оборудование для лазерной резки металла, работающее на газовой смеси, использует электроток для нагрева газа. Состав включает азот, а также углекислый газ, гелий.

Газодинамические устройства применяют в качестве основы углекислый газ. Он нагревается и, проходя через узкое сопло, расширяется и сразу же охлаждается. При этом выделяется огромное количество тепловой энергии, способной срезать металлические изделия большой толщины. Большая мощность обеспечивает высочайшую точность среза при минимальном расходе лучевой энергии.

Устройства, на которых выполняется лазерная резка стали, а также прочих металлических материалов относятся к наиболее совершенному и высокотехнологичному оборудованию. Используя специальные станки, получают качественные и весьма точные резы, которые абсолютно не требуют проведения дополнительной механической обработки. Эти станки имеют весьма высокую стоимость и применяются на солидных предприятиях, выполняющих точную обработку разнообразных металлоизделий. Оборудование, использующее лазер для резки, не предназначено для использования в небольших частных мастерских, а также для бытовых работ.

При этом можно указать, что изредка данная техника применяется для выполнения гравировальных и прочих работ, которые требуют минимальной погрешности, точность лазерной резки металла находится на высочайшем уровне. Эти станки предоставляют возможность выполнять рез по заранее указанным параметрам. После предварительной настройки оператором дальнейший процесс переходит на автоматический режим.

Установки для реза изделий любой конфигурации способны выполнять вырезку впадин, а также фрезеровку по заданным значениям. Помимо этого, эти универсальные приспособления способны на выполнение художественной гравировки по самым различным поверхностям. Их стоимость напрямую зависит от таких показателей, как функциональность, мощность лазера для резки металла, а также бренда производителя.

Станки такого типа оснащаются специальным программным обеспечением, требующим предварительной подготовки оператора. Освоив курс работы на данной технике, управление самим процессом будет совершенно не сложным. Продажа установок этого вида проводится в специализированных магазинах, работающих со сложным оборудованием.

Режимы резки

Обработка металлоизделий лазером проводится на спецоборудовании, работающем в одном из трех режимов:

  • испарение;
  • плавление;
  • сгорание.

Испарение

Лазерная резка по металлу испарением требует высокой интенсивности лучевого потока. Это необходимо для минимизации потери тепла от теплопроводности. Для этого применяют специальные установки твердотельного типа, использующие для работы пульсирующий режим. При данном способе материал в обрабатываемом участке полностью расплавляется, после чего удаляется при помощи специального технологического газа (аргона, азота или же прочих). Данный режим металлообработки используется весьма редко.

Плавление

При этом способе материал не выгорает, а расплав уносится из области обработки газовой струей. Этот способ применяется для работы с алюминием и его сплавами, а также с медью. Это достигается за счет создания сплавов тугоплавкого типа при активном взаимодействии с кислородом. Данные металлы можно разрезать только лучевым потоком высокой мощности.

Сгорание

Этот режим использует интенсивное окисление, которое поглощает излучение лазера и повышает локальность обрабатываемой области. При таком способе отходы убираются равномерно. Режим сгорания подразделяется на управляемый и автогенный, при котором горение металлической поверхности происходит по всему участку кислородного воздействия. Этот режим не позволяет получить ровный рез и его стараются избегать.

Данные режимы лазерной резки металлов выбираются по параметрам материала и необходимой точности обработки. Следует помнить, что от толщины изделия и скорости металлообработки напрямую зависит качество процесса.

Обрабатываемые материалы

Металлообработка лазером используется для обработки алюминия, а также его многочисленных сплавов, бронзы, титана, нержавейки, меди и прочих материалов. При этом алюминиевые изделия, титановые, из нержавеющей стали обладают хорошей отражающей способностью, что негативно влияет на скорость их обработки. Листовые детали до 6 мм лучше обрабатывать азотной установкой.

Для металлических сплавов качество резки напрямую зависит от их толщины. Предметы из черной стали имеют максимальную толщину обработки 20 мм, стальные нержавеющие – 15 мм, медные – 5 мм, а алюминиевые – 10 мм.

Обработка латуни проводится как автоматизированным способом, так и ручным методом. Особенностей и сложностей при этом не возникает. Станок самостоятельно программируется весьма быстро и позволяет получить детали необходимой конфигурации.

Преимущества лазерной резки

Устройства, в которых применяется специальная лазерная резка металла позволяет обрабатывать предметы практически любой толщины. Эти станки работают как с простыми металлическими деталями, так и с нержавейкой, а также разнообразными алюминиевыми сплавами. Отсутствие прямого механического контакта сохраняет форму изделия и не вызывает повреждений, деформации поверхности. Автоматизированная система работает посредством управляющих программ, предоставляющих возможность выполнять резку с высочайшей точностью.

Установки работают не только в автоматическом режиме, но также в ручном, при котором процесс лазерной резки выполняется оператором собственноручно на высокой скорости. Данные станки обладают высокой функциональностью, а также универсальностью. Для них нет необходимости в использовании разнообразных пресс-форм, а также формочек, что значительно снижает затраты. Высокая скорость работы заметно повышает производительность процесса, при котором расходный материал используется с минимальными отходами.