Импульсные преобразователи напряжения. Преобразователь напряжения dc dc схема и работа Импульсный преобразователь напряжения dc схема

Как вы знаете, для того чтобы зажечь белые и синие светодиоды нужно как минимум 3В, в отличие от красных которые могут светиться от 1,2 до 1,5 вольт в зависимости от типа.

Чтобы белый светодиод начал светится от одной батареи на 1,5 вольт необходимо построить электронную схему под названием . Эти устройства, как правило, используется для получения более высокого выходного напряжения по сравнению с входным постоянным током (DC).

В цепях с переменным током эту функцию . Что бы получить более высокое выходное напряжение достаточно, чтобы соотношение количества витков вторичной обмотки к числу первичной было больше 1 (коэффициент трансформации > 1).

Описание работы преобразователя для светодиода

Возвращаясь к нашему преобразователю постоянного тока, есть множество различных вариантов реализации DC-DC преобразования, многие из которых достаточно сложные. В нашем случае, цель состоит в создании схемы простого и эффективного преобразователя для повышения напряжения от 1,5 В до 3,5 В. Ниже приведена схема подобного DC-DC преобразователя для светодиодов.

Для намотки дросселя необходим феррит, форма и размер которого может быть любыми, но лучше применить сердечник типа «кольцо» (или тора) 1…1,5 см в диаметре. Такой, как правило, используется в качестве фильтра на силовых проводах питания (черный блок рядом с разъемом), также его можно найти в импульсных источниках питания, видеомагнитофонов, сканеров и т.д. Обмотка выполнена проводом ПЭВ-2 диаметром 0,4 мм и содержит 30 витков.

Электронная схема очень проста: она состоит из катушки, двух транзисторов, одного конденсатора и двух резисторов. Набор не впечатляет, но со своей целью справляется. Ток потребления составляет 25 мА, что эквивалентно примерно 50 часам непрерывной работы аккумулятора типа АА. Схема работает достаточно хорошо, обеспечивая средний уровень свечения светодиода.

Мощный и довольно хороший повышающий преобразователь напряжения можно построить на основе простого мультивибратора.
В моем случае этот инвертор был построен просто для обзора работы, был сделан также небольшой ролик с работой данного инвертора.

О схеме в целом — простой двухтактный инвертор, проще трудно представить. Задающим генератором и одновременно силовой частью являются мощные полевые транзисторы (желательно использовать ключи типа IRFP260, IRFP460 и аналогичные) подключенные по схеме мультивибратора. В качестве трансформатора можно использовать готовый транс от компьютерного блока питания (самый большой трансформатор).

Для наших целей нужно задействовать обмотки 12 Вольт и среднюю точку (коса, отвод). На выходе трансформатора напряжение может доходить до 260 Вольт. Поскольку выходное напряжение является переменным, то нужно выпрямить диодным мостом. Мост желательно собрать из 4-х отдельных диодов, готовые диодные мосты предназначенны для сетевых частот 50Гц, а в нашей схеме выходная частота в районе 50кГц.

Обязательно использовать импульсные, быстрые или ультрабыстрые диоды с обратным напряжением не ниже 400 Вольт и с допустимым током 1 Ампер и Выше. Можно задействовать диоды MUR460, UF5408,HER307, HER207, UF4007, и другие.
Те же самые диоды рекомендую использовать и в схеме задающей цепи.

Схема инвертора работает на основе параллельного резонанса, следовательно, частота работы будет зависеть от нашего колебательного контура — в лице первичной обмотки трансформатора и конденсатору параллельно этой обмотке.
На счет мощности и работы в целом. Правильно собранная схема в дополнительной наладке не нуждается и работает сразу. В ходе работы ключи не должны вообще греться, если выход трансформатора не нагружен. Холостой ток инвертора может доходить до 300мА — это норма, выше уже проблема.

С хорошими ключами и трансформатором с этой схемы без особых проблем можно снять мощность в районе 300 Ватт, в некоторых случаях даже 500 ватт. Номинал входных напряжений довольно шиток, схема будет работать от источника 6 Вольт до 32 -х Вольт, больше подавать не рискнул.

Дросселя — мотаются проводом 1,2мм на желто-белых кольцах от дросселя групповой стабилизации в компьютерном блоке питания. Количество витков каждого дросселя -7, оба дросселя полностью одинаковы.

Конденсаторы параллельно первичной обмотке может чуть нагреться в ходе работы, поэтому советую использовать высоковольтные конденсаторы с рабочим напряжением 400 Вольт и выше.

Схема проста и полностью работоспособна, но не смотря на простоту и доступность конструкции — это не идеальный вариант. Причина — не самое лучшее управление полевыми ключами. Схема лишена специализированного генератора и управляющей цепи, что делает ее не совсем надежный, если схема предназначена для длительной работы под нагрузкой. Схема может питать ЛДС и устройства, которые имеют встроенные ИИП.

Важное звено — трансформатор, должен быть хорошо намотан и правильно сфазирован, ибо он играет основную роль в надежной работе инвертора.

Первичная обмотка 2х5 витков шиной из 5 -и проводов 0,8 мм. Вторичная обмотка намотана проводом 0,8 мм и содержит 50 витков — это в случае самостоятельной намотки трансформатора.

Для питания различной электронной аппаратуры весьма широко используются DC/DC преобразователи. Применяются они в устройствах вычислительной техники, устройствах связи, различных схемах управления и автоматики и др.

Трансформаторные блоки питания

В традиционных трансформаторных блоках питания напряжение питающей сети с помощью трансформатора преобразуется, чаще всего понижается, до нужного значения. Пониженное напряжение и сглаживается конденсаторным фильтром. В случае необходимости после выпрямителя ставится полупроводниковый стабилизатор.

Трансформаторные блоки питания, как правило, оснащаются линейными стабилизаторами. Достоинств у таких стабилизаторов не менее двух: это маленькая стоимость и незначительное количество деталей в обвязке. Но эти достоинства съедает низкий КПД, поскольку значительная часть входного напряжения используется на нагрев регулирующего транзистора, что совершенно неприемлемо для питания переносных электронных устройств.

DC/DC преобразователи

Если питание аппаратуры осуществляется от гальванических элементов или аккумуляторов, то преобразование напряжения до нужного уровня возможно лишь с помощью DC/DC преобразователей.

Идея достаточно проста: постоянное напряжение преобразуется в переменное, как правило, с частотой несколько десятков и даже сотен килогерц, повышается (понижается), а затем выпрямляется и подается в нагрузку. Такие преобразователи часто называются импульсными.

В качестве примера можно привести повышающий преобразователь из 1,5В до 5В, как раз выходное напряжение компьютерного USB. Подобный преобразователь небольшой мощности продается на Алиэкспресс.

Рис. 1. Преобразователь 1,5В/5В

Импульсные преобразователи хороши тем, что имеют высокий КПД, в пределах 60..90%. Еще одно достоинство импульсных преобразователей широкий диапазон входных напряжений: входное напряжение может быть ниже выходного или намного выше. Вообще DC/DC конвертеры можно разделить на несколько групп.

Классификация конвертеров

Понижающие, по английской терминологии step-down или buck

Выходное напряжение этих преобразователей, как правило, ниже входного: без особых потерь на нагрев регулирующего транзистора можно получить напряжение всего несколько вольт при входном напряжении 12…50В. Выходной ток таких преобразователей зависит от потребности нагрузки, что в свою очередь определяет схемотехнику преобразователя.

Еще одно англоязычное название понижающего преобразователя chopper. Один из вариантов перевода этого слова - прерыватель. В технической литературе понижающий конвертер иногда так и называют «чоппер». Пока просто запомним этот термин.

Повышающие, по английской терминологии step-up или boost

Выходное напряжение этих преобразователей выше входного. Например, при входном напряжении 5В на выходе можно получить напряжение до 30В, причем, возможно его плавное регулирование и стабилизация. Достаточно часто повышающие преобразователи называют бустерами.

Универсальные преобразователи - SEPIC

Выходное напряжение этих преобразователей удерживается на заданном уровне при входном напряжении как выше входного, так и ниже. Рекомендуется в случаях, когда входное напряжение может изменяться в значительных пределах. Например, в автомобиле напряжение аккумулятора может изменяться в пределах 9…14В, а требуется получить стабильное напряжение 12В.

Инвертирующие преобразователи - inverting converter

Основной функцией этих преобразователей является получение на выходе напряжения обратной полярности относительно источника питания. Очень удобно в тех случаях, когда требуется двухполярное питание, например .

Все упомянутые преобразователи могут быть стабилизированными или нестабилизированными, выходное напряжение может быть гальванически связано с входным или иметь гальваническую развязку напряжений. Все зависит от конкретного устройства, в котором будет использоваться преобразователь.

Чтобы перейти к дальнейшему рассказу о DC/DC конвертерах следует хотя бы в общих чертах разобраться с теорией.

Понижающий конвертер чоппер - конвертер типа buck

Его функциональная схема показана на рисунке ниже. Стрелками на проводах показаны направления токов.

Рис.2. Функциональная схема чопперного стабилизатора

Входное напряжение Uin подается на входной фильтр - конденсатор Cin. В качестве ключевого элемента используется транзистор VT, он осуществляет высокочастотную коммутацию тока. Это может быть либо . Кроме указанных деталей в схеме содержится разрядный диод VD и выходной фильтр - LCout, с которого напряжение поступает в нагрузку Rн.

Нетрудно видеть, что нагрузка включена последовательно с элементами VT и L. Поэтому схема является последовательной. Как же происходит понижение напряжения?

Широтно-импульсная модуляция - ШИМ

Схема управления вырабатывает прямоугольные импульсы с постоянной частотой или постоянным периодом, что в сущности одно и то же. Эти импульсы показаны на рисунке 3.

Рис.3. Импульсы управления

Здесь tи время импульса, транзистор открыт, tп - время паузы, - транзистор закрыт. Соотношение tи/T называется коэффициентом заполнения duty cycle, обозначается буквой D и выражается в %% или просто в числах. Например, при D равном 50% получается, что D=0,5.

Таким образом D может изменяться от 0 до 1. При значении D=1 ключевой транзистор находится в состоянии полной проводимости, а при D=0 в состоянии отсечки, попросту говоря, закрыт. Нетрудно догадаться, что при D=50% выходное напряжение будет равно половине входного.

Совершенно очевидно, что регулирование выходного напряжения происходит за счет изменения ширины управляющего импульса tи, по сути дела изменением коэффициента D. Такой принцип регулирования называется (PWM). Практически во всех импульсных блоках питания именно с помощью ШИМ производится стабилизация выходного напряжения.

На схемах, показанных на рисунках 2 и 6 ШИМ «спрятана» в прямоугольниках с надписью «Схема управления», которая выполняет некоторые дополнительные функции. Например, это может быть плавный запуск выходного напряжения, дистанционное включение или защита преобразователя от короткого замыкания.

Вообще конвертеры получили столь широкое применение, что фирмы производители электронных компонентов наладили выпуск ШИМ контроллеров на все случаи жизни. Ассортимент настолько велик, что просто для того чтобы их перечислить понадобится целая книга. Поэтому собирать конвертеры на дискретных элементах, или как часто говорят на «рассыпухе», никому не приходит в голову.

Более того готовые конвертеры небольшой мощности можно купить на Алиэкспрес или Ebay за незначительную цену. При этом для установки в любительскую конструкцию достаточно припаять к плате провода на вход и выход, и выставить требуемое выходное напряжение.

Но вернемся к нашему рисунку 3. В данном случае коэффициент D определяет, сколько времени будет открыт (фаза 1) или закрыт (фаза 2) . Для этих двух фаз можно представить схему двумя рисунками. На рисунках НЕ ПОКАЗАНЫ те элементы, которые в данной фазе не используются.

Рис.4. Фаза 1

При открытом транзисторе ток от источника питания (гальванический элемент, аккумулятор, выпрямитель) проходит через индуктивный дроссель L, нагрузку Rн, и заряжающийся конденсатор Cout. При этом через нагрузку протекает ток, конденсатор Cout и дроссель L накапливают энергию. Ток iL ПОСТЕПЕННО ВОЗРАСТАЕТ, сказывается влияние индуктивности дросселя. Эта фаза называется накачкой.

После того, как напряжение на нагрузке достигнет заданного значения (определяется настройкой устройства управления), транзистор VT закрывается и устройство переходит ко второй фазе - фазе разряда. Закрытый транзистор на рисунке не показан вовсе, как будто его и нет. Но это означает лишь то, что транзистор закрыт.

Рис.5. Фаза 2

При закрытом транзисторе VT пополнения энергии в дросселе не происходит, поскольку источник питания отключен. Индуктивность L стремится воспрепятствовать изменению величины и направления тока (самоиндукция) протекающего через обмотку дросселя.

Поэтому ток мгновенно прекратиться не может и замыкается через цепь «диод-нагрузка». Из-за этого диод VD получил название разрядный. Как правило, это быстродействующий диод Шоттки. По истечении периода управления фаза 2 схема переключается на фазу 1, процесс повторяется снова. Максимальное напряжение на выходе рассмотренной схемы может быть равным входному, и никак не более. Чтобы получить выходное напряжение больше, чем входное, применяются повышающие преобразователи.

Пока только следует напомнить собственно о величине индуктивности, которая определяет два режима работы чоппера. При недостаточной индуктивности преобразователь будет работать в режиме разрывных токов, что совершенно недопустимо для источников питания.

Если же индуктивность достаточно большая, то работа происходит в режиме неразрывных токов, что позволяет с помощью выходных фильтров получить постоянное напряжение с приемлемым уровнем пульсаций. В режиме неразрывных токов работают и повышающие преобразователи, о которых будет рассказано ниже.

Для некоторого повышения КПД разрядный диод VD заменяется транзистором MOSFET, который в нужный момент открывается схемой управления. Такие преобразователи называются синхронными. Их применение оправдано, если мощность преобразователя достаточно велика.

Повышающие step-up или boost преобразователи

Повышающие преобразователи применяются в основном при низковольтном питании, например, от двух-трех батареек, а некоторые узлы конструкции требуют напряжения 12…15В с малым потреблением тока. Достаточно часто повышающий преобразователь кратко и понятно называют словом «бустер».

Рис.6. Функциональная схема повышающего преобразователя

Входное напряжение Uin подается на входной фильтр Cin и поступает на последовательно соединенные L и коммутирующий транзистор VT. В точку соединения катушки и стока транзистора подключен диод VD. К другому выводу диода подключены нагрузка Rн и шунтирующий конденсатор Cout.

Транзистор VT управляется схемой управления, которая вырабатывает сигнал управления стабильной частоты с регулируемым коэффициентом заполнения D, так же, как было рассказано чуть выше при описании чопперной схемы (Рис.3). Диод VD в нужные моменты времени блокирует нагрузку от ключевого транзистора.

Когда открыт ключевой транзистор правый по схеме вывод катушки L соединяется с отрицательным полюсом источника питания Uin. Нарастающий ток (сказывается влияние индуктивности) от источника питания протекает через катушку и открытый транзистор, в катушке накапливается энергия.

В это время диод VD блокирует нагрузку и выходной конденсатор от ключевой схемы, тем самым предотвращая разряд выходного конденсатора через открытый транзистор. Нагрузка в этот момент питается энергией накопленной в конденсаторе Cout. Естественно, что напряжение на выходном конденсаторе падает.

Как только напряжение на выходе станет несколько ниже заданного, (определяется настройками схемы управления), ключевой транзистор VT закрывается, и энергия, запасенная в дросселе, через диод VD подзаряжает конденсатор Cout, который подпитывает нагрузку. При этом ЭДС самоиндукции катушки L складывается с входным напряжением и передается в нагрузку, следовательно, напряжение на выходе получается больше входного напряжения.

По достижении выходным напряжением установленного уровня стабилизации схема управления открывает транзистор VT, и процесс повторяется с фазы накопления энергии.

Универсальные преобразователи - SEPIC (single-ended primary-inductor converter или преобразователь с несимметрично нагруженной первичной индуктивностью).

Подобные преобразователи применяются в основном, когда нагрузка имеет незначительную мощность, а входное напряжение изменяется относительно выходного в большую или меньшую сторону.

Рис.7. Функциональная схема преобразователя SEPIC

Очень похожа на схему повышающего преобразователя, показанного на рисунке 6, но имеет дополнительные элементы: конденсатор C1 и катушку L2. Именно эти элементы и обеспечивают работу преобразователя в режиме понижения напряжения.

Преобразователи SEPIC применяются в тех случаях, когда входное напряжение изменяется в широких пределах. В качестве примера можно привести 4V-35V to 1.23V-32V Boost Buck Voltage Step Up/Down Converter Regulator. Именно под таким названием в китайских магазинах продается преобразователь, схема которого показана на рисунке 8 (для увеличения нажмите на рисунок).

Рис.8. Принципиальная схема преобразователя SEPIC

На рисунке 9 показан внешний вид платы с обозначением основных элементов.

Рис.9. Внешний вид преобразователя SEPIC

На рисунке показаны основные детали в соответствии с рисунком 7. Следует обратить внимание на наличие двух катушек L1 L2. По этому признаку можно определить, что это именно преобразователь SEPIC.

Входное напряжение платы может быть в пределах 4…35В. При этом выходное напряжение может настраиваться в пределах 1,23…32В. Рабочая частота преобразователя 500КГц.При незначительных размерах 50 x 25 x 12мм плата обеспечивает мощность до 25 Вт. Максимальный выходной ток до 3А.

Но тут следует сделать замечание. Если выходное напряжение установить на уровне 10В, то выходной ток не может быть выше 2,5А (25Вт). При выходном напряжении 5В и максимальном токе 3А мощность составит всего 15Вт. Здесь главное не перестараться: либо не превысить максимально допустимую мощность, либо не выйди за пределы допустимого тока.

Еще перед Новым годом попросили меня читатели сделать обзор на пару преобразователей.
Ну мне как бы в принципе несложно, да и самому любопытно, заказал, получил, протестировал.
Правда меня больше заинтересовал немного другой преобразователь, но до него никак не дойдут руки, потому о нем в другой раз.
Ну а сегодня обзор простого DC-DC преобразователя с заявленным током в 10 Ампер.

Заранее приношу извинение за большую задержку с публикацией этого обзора у тех, кто его давно ждал.

Для начала характеристики, заявленные на странице товара и небольшое пояснение и коррекция.
Input voltage: 7-40V
1, Output voltage: continuously adjustable (1.25-35V)
2, Output Current: 8A, 10A maximum time within the (power tube temperature exceeds 65 degrees, please add cooling fan, 24V 12V 5A turn within generally be used at room temperature without a fan)
3, Constant Range: 0.3-10A (adjustable) module over 65 degrees, please add fan.
4, Turn lights Current: current value * (0.1) This version is a fixed 0.1 times (actually turn the lamp current value is probably not very accurate) is full of instructions for charging.
5, Minimum pressure: 1V
6, Conversion efficiency: up to about 95% (output voltage, the higher the efficiency)
7, Operating frequency: 300KHZ
8, Output Ripple: about the ripple 50mV (without noise) 20M bandwidth (for reference) Input 24V Output 12V 5A measured
9, Operating temperature: Industrial grade (-40 ℃ to + 85 ℃)
10, No-load current: Typical 20mA (24V switch 12V)
11, Load regulation: ± 1% (constant)
12, Voltage Regulation: ± 1%
13, Constant accuracy and temperature: the actual test, the module temperature changes from 25 degrees to 60 degrees, the change is less than 5% of the current value (current value 5A)

Немного переведу на более понятный язык.
1. Диапазон регулировки выходного напряжения - 1.25-35 Вольт
2. Выходной ток - 8 Ампер, можно 10 но с дополнительным охлаждением при помощи вентилятора.
3. Диапазон регулировки тока 0,3-10 Ампер
4. Порог выключения индикации заряда - 0.1 от установленного выходного тока.
5. Минимальная разница между входным и выходным напряжением - 1 Вольт (предположительно)
6. КПД - до 95%
7. Рабочая частота - 300кГц
8. Выходные пульсации напряжения, 50мВ при токе 5 Ампер, входном напряжении 24 и выходном 12 Вольт.
9. Диапазон рабочих температур - от - 40 ℃ до + 85 ℃.
10. Собственный ток потребления - до 20мА
11. Точность поддержания тока - ±1%
12. Точность поддержания напряжения - ±1%
13. Параметры проверены в диапазоне температур 25-60 градусов и изменение составило менее 5% при токе нагрузки 5 Ампер.

Пришел заказ в стандартном полиэтиленовом пакетике, щедро обмотанном лентой из вспененного полиэтилена. В процессе доставки ничего не пострадало.
Внутри находилась моя подопытная платка.

Внешне замечаний никаких. Вот просто крутил в руках и даже особо и придраться было не к чему, аккуратно, а если заменить конденсаторы на фирменные, то сказал бы что красиво.
На одной из сторон платы размещены два клеммника, вход и выход питания.

На второй стороне два подстроечных резистора для регулировки выходного напряжения и тока.

Так если посмотреть на фото в магазине, то платка кажется довольно большой.
Я специально два предыдущих фото также сделал крупным планом. Но понимание размера наступает когда кладешь рядом с ней спичечный коробок.
Платка реально маленькая, я не смотрел размеры когда заказывал, но мне почему то казалось, что она заметно больше. :)
Размеры платы - 65х37мм
Размеры преобразователя - 65х47х24мм

Плата двухслойная, монтаж двухсторонний.
К пайке также замечаний не возникло. Иногда бывает, что массивные контакты плохо пропаяны, но на фото видно, что здесь такого нет.
Правда элементы не пронумерованы, но думаю что ничего страшного, схема довольно простая.

Кроме силовых элементов на плате присутствует и операционный усилитель, который питается от стабилизатора 78L05, также есть и простенький источник опорного напряжения, собранный при помощи TL431.

На плате установлен мощный ШИМ контроллер , при этом он даже изолирован от радиатора.
Я не знаю зачем производитель изолировал микросхему от радиатора, так как это снижает теплоотдачу, возможно в целях безопасности, но так как плата обычно встраивается куда то, то мне кажется это лишним.

Так как плата рассчитана на довольно большой выходной ток, то в качестве силового диода применили довольно мощную диодную сборку , которую также установили на радиатор и также изолировали от него.
На мой взгляд это очень хорошее решение, но можно было его немного улучшить, если применить сборку на 60 Вольт, а не на 100.

Дроссель не очень большой, но на этом фото видно, что намотан он в два провода, что уже неплохо.

1, 2 На входе установлено два конденсатора 470мкФ х 50 В, на выходе два по 1000мкФ, но на 35 В.
Если следовать списку заявленных характеристик, то по выходу напряжение конденсаторов совсем впритык, но вряд ли кто то будет понижать напряжение с 40 до 35, не говоря о том, что 40 Вольт для микросхемы это вообще максимальное входное напряжение.
3. Входной и выходной разъемы подписаны, правда снизу платы, но это особо непринципиально.
4. А вот подстроечные резисторы никак не обозначены.
Слева регулировка максимального выходного тока, справа - напряжения.

А теперь немного разберемся с заявленными характеристиками и с тем, что имеем на самом деле.
Выше я писал, что в преобразователе применен мощный ШИМ контроллер, а точнее ШИМ контроллер со встроенным силовым транзистором.
Также выше я цитировал заявленные характеристики платы, попробуем разобраться.
Заявлено - Output voltage: continuously adjustable (1.25-35V)
Здесь вопросов нет, 35 Вольт преобразователь выдаст, даже 36 выдаст, в теории.
Заявлено - Output Current: 8A, 10A maximum
А вот здесь вопрос. Производитель микросхемы явно указывает, максимальный выходной ток 8 Ампер. В характеристиках микросхемы правда есть строка - ограничение максимального тока - 10 Ампер. Но это далеко не максимальный рабочий, 10 Ампер это предельный.
Заявлено - Operating frequency: 300KHZ
300кГц это конечно классно, можно дроссель поставить меньше габаритами, но извините, даташит вполне однозначно пишет 180кГц фиксированная частота, откуда 300?
Заявлено - Conversion efficiency: up to about 95%
Ну здесь все честно, КПД до 95%, производитель вообще заявляет до 96%, но это в теории, при определенном соотношении входного и выходного напряжения.

А вот и блок-схема ШИМ контроллера и даже пример реализации.
Кстати, здесь хорошо видно, что для 8 Ампер тока применяют дроссель не менее 12 Ампер, т.е. 1.5 от выходного тока. Я обычно рекомендую применять 2х запас.
Также здесь показано, что выходной диод можно ставить с напряжением 45 Вольт, диоды с напряжением 100 Вольт обычно имеют больше падение и соответственно снижают КПД.
Если есть цель повысить КПД данной платы, то со старых компьютерных БП можно наковырять диодов типа 20 Ампер 45 Вольт или даже 40 Ампер 45 Вольт.

Изначально я не хотел чертить схему, плата сверху закрыта деталями, маской, еще и шелкографией, но потом посмотрел, что схему перерисовать вполне реально и решил не изменять традиции:)
Индуктивность дросселя я не измерял, 47мкГн взято из даташита.
В схеме применен сдвоенный операционный усилитель, первая часть используется для регулировки и стабилизации тока, вторая для индикации. Видно что вход второго ОУ подключен через делитель 1 к 11, вообще в описании заявлено 1 к 10, но думаю что это непринципиально.

Первая проба на холостом ходу, изначально плата настроена на выходное напряжение 5 Вольт.
Напряжение стоит стабильно в диапазоне питающих напряжений 12-26 Вольт, ток потребления ниже 20мА так как не регистрируется амперметром БП.

Светодиод будет светить красным если выходной ток больше чем 1/10 (1/11) от установленного.
Такая индикация применяется для заряда аккумуляторов, так как если в процессе заряда ток упал ниже чем 1/10, то обычно считается что заряд окончен.
Т.е. выставили ток заряда 4 Ампера, светит красным пока ток не упадет ниже 400мА.
Но есть предупреждение, плата только показывает снижение тока, зарядный ток при этом не отключается, а просто снижается дальше.

Для тестирования я собрал небольшой стенд, в котором принимали участие.






Ручка и бумажка, ссылку потерял:)

Но в процессе тестирования мне в итоге пришлось потом применить и регулируемый блок питания, так как выяснилось, что из-за моих экспериментов нарушилась линейность измерения/задания тока в диапазоне 1-2 Ампера у мощного блока питания.
В итоге сначала я провел тесты нагрева и оценку уровня пульсаций.

Тестирование в этот раз происходило немного по другому чем обычно.
Измерялись температуры радиаторов в местах близких к силовым компонентам, так как температуру самих компонентов из-за плотного монтажа измерить было тяжело.
Кроме того проверялась работа в следующих режимах.
Вход - выход - ток
14В - 5В - 2А
28В - 12В - 2А
14В - 5В - 4А
И т.д. до тока 7.5 А.

Почему тестирование происходило таким хитрым способом.
1. Я не был уверен в надежности платы и поднимал ток постепенно чередуя разные режимы работы.
2. Преобразование 14 в 5 и 28 в 12 было выбрано потому, что это одни из самых часто используемых режимов, 14 (примерное напряжение бортовой сети легкового авто) в 5 (напряжение для зарядки планшетов и телефонов). 28 (напряжение бортовой сети грузового авто) в 12 (просто часто используемое напряжение.
3. Изначально у меня был план тестировать пока не отключится или не сгорит, но планы изменились и у меня возникли некоторые планы на компоненты от этой платы. потому тестировал только до 7.5 Ампер. Хотя в итоге это никак не повлияло на корректность проверки.

Ниже пара групповых фото, где я покажу тесты 5 Вольт 2 Ампера и 5 Вольт 7.5 Ампер, а также соответствующий уровень пульсаций.
Пульсации при токах 2 и 4 Ампера были похожи, также были похожи пульсации при токах 6 и 7.5 Ампера, потому промежуточные варианты я не привожу.

То же самое что выше, но 28 Вольт вход и 12 Вольт выход.

Тепловой режим при работе со входным 28 Вольт и выходным 12.
Видно что дальше ток повышать не имеет смысла, тепловизор уже показывает температуру ШИМ контроллера в 101 градус.
Для себя я использую некий лимит, температура компонентов не должна превышать 100 градусов. Вообще это зависит от самих компонентов. например транзисторы и диодные сборки можно безопасно эксплуатировать и при больших температурах, а микросхемам лучше не превышать это значение.
На фото конечно видно не очень, плата очень компактная, да и в динамике это было видно немного лучше.

Так как я посчитал, что эту плату могут использовать как зарядное устройство, то прикинул как она будет работать в режиме когда на входе 19 Вольт (типичное напряжение БП ноутбука), а на выходе 14.3 Вольта и 5.5 Ампера (типичные параметры заряда автомобильного аккумулятора).
Здесь все прошло без проблем, ну почти без проблем, но об этом позже.

Результаты измерений температур я свел в табличку.
Судя по результатам тестов, я бы рекомендовал не использовать плату при токах более 6 Ампер, по крайней мере без дополнительного охлаждения.

Выше я написал, что были некоторые особенности, объясню.
В процессе тестов я заметил, что плата ведет себя немного неадекватно при определенных ситуациях.
1.2 Выставил напряжение на выходе в 12 Вольт, ток нагрузки 6 Ампер, через 15-20 секунд напряжение на выходе упало ниже 11 Вольт, пришлось корректировать.
3,4 На выходе было выставлено 5 Вольт, на входе 14, поднял входное до 28 и выходное упало до 4 Вольт. На фото слева ток 7.5 Ампера, справа 6 Ампер, но ток роли не играл, при поднятии напряжения под нагрузкой, плата «сбрасывает» выходное напряжение.

После этого я решил проверить КПД устройства.
Производитель привел графики для разных режимов работы. Меня интересуют графики с выходным 5 и 12 Вольт и входным 12 и 24, так как они наиболее близки к моему тестированию.
В частности декларируется -

2A - 91%
4A - 88%
6A - 87%
7.5A - 85%


2A - 94%
4A - 94%
6A - 93%
7.5A - Не декларируется.

Дальше шла в принципе простая проверка, но с некоторыми нюансами.
5 Вольт тест прошел без проблем.

А вот с тестом 12 вольт были некоторые особенности, распишу.
1. 28 В вход, 12 В выход, 2 А, все нормально
2. 28 В вход, 12 В выход, 4 А, все нормально
3. Поднимаем ток нагрузки до 6 Ампер, выходное напряжение просаживается до 10.09
4. Корректируем, подняв опять до 12 Вольт.
5. Поднимаем ток нагрузки до 7.5 Ампер, опять падает, опять корректируем.
6. Опускаем ток нагрузки до 2 Ампер без коррекции, напряжение на выходе поднимается до 16,84.
Изначально я хотел показать как оно поднялось без нагрузки до 17.2, но решил что это будет некорректно и привел фото где есть нагрузка.
Да, грустно:(

Ну попутно проверил КПД в режиме заряда автомобильного аккумулятора от БП ноутбука.
Но здесь также не обошлось без особенностей. Сначала было выставлено 14.3 В на выходе, я провел тест на нагрев и отложил плату. но потом вспомнил, что хотел проверить и КПД.
Подключаю остывшую плату и наблюдаю на выходе напряжение около 14.59 Вольт, которое по мере прогрева упало до 14.33-14.35.
Т.е. по факту выходит, что у платы есть нестабильность выходного напряжения. и если для свинцово-кислотных аккумуляторов такой разбег не так критичен, то литиевые аккумуляторы такой платой заряжать нельзя категорически.

Тестов КПД у меня вышло два.
Основаны они на двух результатах измерений, хотя в итоге отличаются не очень сильно.
Р вых - расчетная выходная мощность, значение тока потребления округлено, Р вых DCL - выходная мощность, измеренная электронной нагрузкой. Входное и выходное напряжение измерялось непосредственно на клеммах платы.
Соответственно получилось два результата измерений КПД. Но в любом случае видно, что КПД примерно похож на заявленный, хотя и немного меньше.
Продублирую то, что заявлено в даташите
Для 12 Вольт вход и 5 Вольт выход
2A - 91%
4A - 88%
6A - 87%
7.5A - 85%

Для 24 Вольта вход и 12 Вольт выход.
2A - 94%
4A - 94%
6A - 93%
7.5A - Не декларируется.

И что вышло в реальности. Думаю что если заменить мощный диод на его более низковольтный аналог и поставить дроссель, рассчитанный на больший ток, то получилось бы вытянуть еще пару процентов.

На этом вроде все и я даже знаю что думают читатели -
Зачем нам куча тестов и непонятных фоток, просто скажи что в итоге, годится или нет:)
И в какой то степени читатели будут правы, по большому счету обзор можно сократить раза в 2-3, убрав часть фото с тестами, но я так уже привык, уж извините.

И так резюме.
Плюсы
Вполне качественное изготовление
Небольшой размер
Широкий диапазон входного и выходного напряжений.
Наличие индикации окончания заряда (снижения зарядного тока)
плавная регулировка тока и напряжения (без проблем можно выставить выходное напряжение с точностью 0.1 Вольта
Отличная упаковка.

Минусы .
При токах выше 6 Ампер лучше применять дополнительное охлаждение.
Максимальный ток не 10, а 8 Ампер.
Низкая точность поддержания выходного напряжения, возможная зависимость его от тока нагрузки, входного напряжения и температуры.
Иногда плата начинала «звучать», происходило это в очень узком диапазоне регулировки, например меняю выходное от 5 до 12 и при 9.5-10 Вольт тихонько пищит.

Отдельное напоминание:
Плата только отображает падение тока, отключить заряд не может, это просто преобразователь.

Мое мнение. Ну вот честно, когда сначала взял плату в руки и крутил ее, осматривая со всех сторон, то хотел хвалить. Сделана аккуратно, особых претензий не было. Когда подключил, то также особо не хотел ругаться, ну греется, так они все греются, это в принципе нормально.
Но когда увидел как скачет выходное напряжение от всего чего угодно, то расстроился.
Я не хочу проводить расследование этих проблем, так как этим должен заниматься производитель, который зарабатывает на этом деньги, но предположу, что проблема кроется в трех вещах
1. Длинная дорожка обратной связи, проходящая почти по периметру платы
2. Подстроечные резисторы, установленные вплотную к горячему дросселю
3. Дроссель расположен точно над узлом, где сосредоточена «тонкая» электроника.
4. Применены не прецизионные резисторы в цепях обратной связи.

Вывод - для нетребовательной нагрузки вполне подойдет, до 6 Ампер точно, работает неплохо. Как вариант, использовать плату в качестве драйвера мощных светодиодов, работать будет хорошо.
Использование как зарядного устройства весьма сомнительно, а в некоторых случаях опасно. Если свинцово-кислотный еще нормально отнесется к таким перепадам, то литиевые заряжать нельзя, по крайней мере без доработки.

Вот и все, как всегда жду комментариев, вопросов и дополнений.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +121 Добавить в избранное Обзор понравился +105 +225