Блок питания для шуруповерта 14в своими руками. Сетевой блок питания шуруповерта. Выход есть – переделка шуруповерта в сетевой

Аккумуляторный шуруповёрт это несомненно полезный инструмент, главным плюсом которого является мобильность. Но когда полностью или частично умирают родные аккумуляторы, покупка новых выливается в кругленькую сумму, сопоставимой половине стоимости нового инструмента. Многие просто покупают новый шуруповёрт, я же предлагаю за счёт потери мобильности сделать для него надёжный источник питания, который навсегда уберёт проблему постоянной зарядки полудохлых аккумуляторов.

Давайте разберём все за и против такой модернизации

Начнём пожалуй с минусов . Самая большая и единственная проблема — это привязка проводами шуруповёрта к розетке, которая с лихвой перекрывается нижеперечисленными плюсами:

  • Шуруповёрт всегда готов к работе, проблема незаряженных аккумуляторов (или не вовремя разрядившихся) отпадает.
  • Прекрасно чувствует себя в среде низких и отрицательных температур, в отличие от аккумулятора.
  • Если родные аккумуляторы сдохли, а покупать новые душит жаба, то блок питания полностью заменяет аккумуляторы.

Если вас устраивают такие условия, то начнём!

Блок питания можно сделать импульсным или трансформаторным. Почему я остановился именно на трансформаторном варианте, будет понятно по ходу прочтения статьи. Если ваш шуруповёрт работает от 12 или 14 вольт, то советую остановится именно на импульсном блоке питания от компьютера. Такой вариант требует минимум переделки и затрат.

Пациент №1

Причина модернизации: Аккумуляторы быстро садятся, даже тогда, когда они были новыми.

Цель модернизации: Получить гибрид, работающий от аккумуляторов и от сети.

Для питания нужен ток, порядка 10А. Тут встаёт вопрос применения компьютерного блока питания, но вот незадача — шуруповёрт работает от 18в. При подаче на него 12в крутит очень вяло и можно затормозить рукой почти не прилагая никаких усилий. Хотя некоторые утверждают, что шурупорвёрт нормально крутит и от 12 вольт, но теперь так сказать, миф проверен и разрушен.

Остаётся 2 варианта — переделывать ШИМ управление импульсного блока, чтобы он выдал нужное напряжение, либо использовать трансформатор с нужным напряжением.

Ещё одним минусом импульсного блока питания является то, что он рассчитан для работы при комнатной температуре, и не известно, как он поведёт себя при более низкой. Трансформатору в принципе практически всё равно в каких условиях его эксплуатируют. Хотя это всё предположения, не проверенные на практике.

Мощный трансформатор на 18 вольт довольно сложно найти, а для меня стало невозможно. Вот на этом моменте я хотел вернутся к варианту с компьютерным блоком питания, но вдруг, как говорят мастера 7 рязряда в руки случайно попал тороидальный трансформатор с намотанной первичной обмоткой. Осталось только намотать вторичку, у меня получилось около 90 витков проводом 1.5.

Если вы решились перемотать трансформатор на другое напряжение , то вам поможет программа Power Trans.

Блок питания выполнен в корпусе от AT блока. Роль выпрямителя играют 10 амперные диоды шоттки, включенные по мостовой схеме. 220 поступает на родной разъём блока, 18в выходит с разъёма, предназначенного для подключения монитора. Тумблер является выключаетем питания, а светодиод сигнализирует о наличии 18в.

Для удобства в работе и переноске блок оснащён складной ручкой:

Так как мне нужен гибрид, пришлось вывести отдельную линию питания для подключения блока:

При этом не стоит забывать отсоединять аккумуляторы при работе от блока.

Воспользовавшись случаем, при разборке шуруповёрта добавил подсветку рабочей зоны:

В итоге получился такой мутант:

Пациент №2

Причина модернизации: Умер родной аккумулятор, восстановление не оправдано.

Цель модернизации: Заменить аккумулятор блоком питания.

Вот тут мне попался агрегат на 12 вольт, и я подключил его к компьютерному блоку питания. Но не нут то было — блок стал уходить в защиту. Подключил его к более мощному БП, картина не изменилась. Причиной тому явилась короткозамкнутая обмотка двигателя. Щётки у двигателя оказались довольно большими, и я решил сделать трансформаторный блок питания, в нём защиты нет. В любом случае двигатель какое-то время поработает, а потом его можно будет заменить (прекрасно подходят от других шуруповёртов и от автомобильных помп).

Вот тут мне пригодился трансформатор от ИБП, удачно пролежавший у меня под столом пол десятка лет в ожидании своего звёздного часа. Как раз под искомые 12в.

Всё собрано по тому же принципу, только вместо диодов шоттки использовал 3 диодные сборки шоттки, добытые из компьютерных БП.

В предыдущем блоке я использовал целый шнур для подключения монитора, но так делать не стоит. Сечение родного шнура мало, и вызывает нагрев и потери. Правильнее использовать только разъём. К нему я подпаял двухжильный ПВС 2,5 квадрата:

Сильно длинный низковольтный шнур лучше не использовать, будут потери. Лучше сделать длиннее сетевой шнур.

Вынул из корпуса аккумулятора банки и подключил питание:

Машинка готова

Аккумуляторные шуруповёрты обеспечивают мобильность и свободу движения при выполнении различных работ. Однако распространённая проблема всех питающих батарей – это снижение эффективности со временем. Через определённое количество циклов они начинают хуже держать заряд или вовсе выходят из строя. Часто это становится причиной покупки нового дорогостоящего инструмента. Опытные мастера рекомендуют сделать блок питания для шуруповёрта, что позволит использовать его неограниченно на полной мощности.

Конструктивные особенности шуруповёрта

Любой современный шуруповёрт имеет достаточно простую конструкцию. Он состоит из нескольких основных элементов, присутствующих в каждой модели:

  • электродвигатель,
  • аккумуляторная батарея,
  • клавиша запуска,
  • регулятор усилия,
  • регулятор скорости вращения,
  • планетарный редуктор,
  • рычаг изменения направления движения.

Для предстоящей переделки имеют значение только первые три элемента – двигатель, аккумулятор и кнопка пуска, а остальные не будут затрагиваться никаким образом. Задача заключается в том, чтобы переделать аккумулятор в блок питания для работы от обычной электросети. Батареи являются наиболее дорогим элементом – они занимают до 75% общей стоимости инструмента, так что такое решение оправдано.

Подготовительный этап

Сначала необходимо учесть размеры корпуса инструмента, чтобы новый элемент поместился внутрь. Сетевой блок можно разместить в корпусе самого шуруповёрта или в корпусе батареи в зависимости от конкретной модели. Габариты внешне определить сложно, поэтому желательно открыть его и изъять все внутренние компоненты. Если корпус склеен по швам, то необходимо ножом аккуратно разделить его. Чаще всего он крепится только на небольшие шурупы. Основные действия на предварительном этапе:

  1. 1. Внимательно изучаем размеры и ищем место для установки нового компонента.
  2. 2. Находим маркировку с указанием напряжения питания (запоминаем его).
  3. 3. Вычисляем требуемую силу тока.

Последний пункт вызывает трудности, потому что производители обычно не пишут этот параметр. Для вычисления нужно мощность (полную электрическую нагрузку) в ваттах разделить на напряжение электрической цепи в вольтах. Вычисление можно сделать на глаз по ёмкости и времени заряда.

Если первое значение составляет 1,2 А/ч, а второе 2,5 часа, то сила тока (А) будет равна примерно среднему значению, т. е. около 1,9 А.

При некорректной оценке можно потратить много сил и времени на создание блока питания, но не получить желаемого результата.

  • размеры,
  • минимальная требуемая сила тока,
  • требуемое для работы напряжение для питания электродвигателя.

Большой популярностью пользуются импульсные сетевые блоки, потому что они легче и меньше трансформаторных. Нужно учитывать, что на дешёвых китайских моделях обычно пишут завышенные характеристики. Старые блоки советского образца подходят для переделки, но у них большой вес и низкий КПД. Найти нужные компоненты можно в специализированных магазинах или на рынках с товарами для радиолюбителей. Просто сообщите продавцу требуемые технические параметры.

Способы переделывания шуруповёрта

К этому моменту корпус уже должен быть открыт, поэтому можно приступать к переделыванию бокса, в котором до этого располагалась АКБ. Последовательность действий будет следующая:

  1. 1. Отделить от вилки шнур с выводами (необходимо воспользоваться паяльником).
  2. 2. Разместить "голый" сетевой блок питания на место бывшей аккумуляторной батареи.
  3. 3. Подвести шнур для питания к БП через специальное отверстие в корпусе.
  4. 4. Припаять шнур к БП.

Основная задача сводится к перепаиванию проводов от контактов, которые соединяются с аккумуляторной батареей, к контактам нового блока питания. В итоге ток пойдёт сразу на них, позволяя запускать мотор при нажатии кнопки.

Выход блока соединяется клеммами с обязательным соблюдением полярности. Вся эта конструкция должна уместиться на месте бывшего аккумулятора, который теперь уже не нужен. Если что-то не сходится по размерам, тогда лучше встроить новое гнездо в рукоятку инструмента.

Обязательное условие – это подключение блока питания параллельно питающим выводам, а в разрыве провода на плюс установить специальный диод. Если этого не сделать, то питание во время работы может пойти на батарею. Диод в свою очередь встраивается в схему минусом в сторону электродвигателя инструмента.

Разнообразные блоки питания для электроинструмента

Вы можете сделать блок питания для шуруповёрта своими руками, а можете купить готовый вариант на блошином рынке. Народные умельцы предлагают БП с уже подсоединёнными разъёмами, которые вставляются в гнездо АКБ. После этого инструмент начинает работать от сети.

При отсутствии под рукой розетки можно воспользоваться автомобильной аккумуляторной батареей. В этом случае необходимо соединить контакты шуруповёрта с контактами АКБ, используя специальные зажимы. Однако такой вариант рекомендуется использовать только в крайнем случае, так как мощности автомобильной батареи недостаточно. Обычно выдаваемое напряжение не превышает 11–12В, а чтобы работать шуруповёртом требуется не менее 18–19В.

Распространённый вариант среди радиолюбителей – это элементы АТ-типа, используемые для питания компьютеров. Плюсом является то, что к таким устройствам прилагается подробная спецификация, поэтому не придётся самостоятельно высчитывать силу тока и другие параметры. Внутри него имеется всё необходимое для стабильной работы: диодная сборка, трансформаторы, силовые транзисторы. Остаётся только правильно подключить его к питающим контактам шуруповёрта.

Наиболее эстетичный вариант – это подключение электроинструмента напрямую к сети при помощи вилки на гибком кабеле. Однако провод нельзя напрямую подвести от контактов к вилке. Чтобы сделать функциональный и безопасный сетевой прибор, потребуется отдельный БП или трансформатор с выпрямителем. В данном случае подойдёт любая модель, если её характеристики соответствуют требуемым параметрам. Такой способ сборки больше подходит для опытных мастеров, потому что нужно точно рассчитать количество витков и диаметр проволоки.

Если хочется сохранить удобство и мобильность, тогда подойдёт увеличение ёмкости аккумулятора. Необходимо найти батарею от любой техники, например, ноутбука. Обычно они достаточно мощные и способны поддерживать работоспособность на протяжении нескольких часов.

Выполняем следующие действия:

  1. 1. Разбираем корпус устройства, извлекаем батарею.
  2. 2. Соединяем проводку новой батареи со старой, строго соблюдая полярность.
  3. 3. Скрепляем провода с помощью изолирующей ленты или спаиваем паяльником.
  4. 4. Включаем электроинструмент, проверяем его работоспособность.

Кабель для зарядки устройства нужно подводить отдельно, поэтому нужно прикрепить штекер. Если всё соблюдено правильно, то шуруповёрт сможет работать от АКБ, а заряжать его можно как обычный ноутбук, воткнув вилку в сеть.

Вне зависимости от выбранного способа нужно помнить, что характеристики устройства поменялись. При работе от сети максимальный крутящий момент достигается не сразу, а через некоторое время. Увеличившаяся мощность приводит к быстрому нагреванию, поэтому следует каждые 15–20 минут давать небольшой отдых. При эксплуатации переделанного инструмента не стоит забывать о технике безопасности, поэтому обязательным условием является качественная изоляция и заземление.

Из-за нарушенной герметичности корпуса увеличивается интенсивность загрязнения, поэтому следует регулярно прочищать его от пыли. Внутрь также может попасть влага, особенно при работе на открытом воздухе. Соблюдение простых правил защитит от неприятных происшествий и существенно продлит срок службы электрического инструмента.

Знакомый попросил собрать внешний блок питания для шурупоповёрта. Вместе с шуруповёртом (рис.1 ) принес трансформатор питания от старого советского выжигателя-гравёра «Орнамент-1» (рис.2) – посмотреть, нельзя ли его использовать?

Сначала, конечно, разобрали аккумуляторный отсек, посмотрели на «банки» (рис.3 и рис.4 ). Проверили зарядным устройством на работоспособность каждую «банку» несколькими циклами заряда-разряда – из 10 штук только 1 хорошая и 3 более-менее нормальные, а остальные совсем «сдохли». Значит, точно придётся делать внешний блок питания.

Чтобы собирать блок питания, надо знать какой ток потребляет шуруповёрт при работе. Подключив его к лабораторному источнику, узнаём, что двигатель начинает вращаться при 3,5 В, а при 5-6 В появляется приличная мощность на валу. Если нажать пусковую кнопку при подаче на него 12 В, срабатывает защита у блока питания – значит, ток потребления превышает 4 А (защита настроена на это значение). Если шуруповёрт запустить на низком напряжении, а потом его повысить до 12 В – работает нормально, ток потребления около 2 А, но в тот момент, когда вкручиваемый шуруп входит наполовину в доску, защита у блока питания опять срабатывает.

Чтобы посмотреть полную картину потребляемых токов, шуруповёрт подключили к автомобильному аккумулятору, поставив в разрыв плюсового провода резистор сопротивлением 0,1 Ом (рис.5 ). Напряжение падения с него подавали в компьютерную , для просмотра использовали программу . Получившийся график показан на рисунке 6 .

Первый импульс слева – пусковой при включении. Видно, что максимальное значение достигает 1,8 В и это говорит о протекающем токе 18 А (I=U/R). Затем, по мере набора двигателем оборотов, ток падает до 2 А. В средине второй секунды головка шуруповёрта зажимается рукой до срабатывания «трещётки» - ток в это время возрастает примерно до 17 А, затем падает до 10-11 А. В конце 3-ей секунды пусковая кнопка отпущена. Получается, что для работы шуруповёрта требуется блок питания с возможностью отдавать мощность 200 Вт и ток до 20 А. Но, учитывая, что на аккумуляторном отсеке написано, что он на 1,3 А/ч (рис.7 ), то, скорее всего, всё не так плохо, как кажется на первый взгляд.

Вскрываем блок питания выжигателя, меряем выходные напряжения. Максимальное – около 8,2 В. Мало, конечно. Учитывая падение напряжения на диодах выпрямителя, выходное напряжение на фильтрующем конденсаторе будет около 10-11 В. Но деваться некуда, пробуем собрать схему по рисунку 8 . Диоды использованы марки КД2998В (Imax=30 А, Umax=25 В). Крепление диодов VD1-VD4 выполнено навесным монтажом на лепестках контактных гнёзд выжигателя (рис.9 и рис.10 ). В качестве конденсатора большой ёмкости использовано параллельное включение 19-ти штук меньшей ёмкости. Вся «батарея» обмотана малярным скотчем и конденсаторы подобраны таких размеров, чтобы вся связка с лёгким усилием входила в аккумуляторный отсек шуруповёрта (рис.11 и рис.12 ).

В выжигателе очень неудобно стоит предохранительная колодка, поэтому она была убрана, а предохранитель подпаян «напрямую» между одним из проводов 220 В и выводом помехоподавляющего конденсатора С1 (рис.13 ). При закрывании корпуса сетевой провод туго обжимается проходным резиновым кольцом и это не позволяет проводу болтается внутри при изгибании его снаружи.

Проверка работоспособности шурупововёрта показала, что всё работает нормально, трансформатор после получасового сверления и закручивания саморезов нагревается примерно до 50 градусов по Цельсию, диоды нагреваются до такой же температуры и в радиаторах не нуждаются. Шуруповёрт с таким блоком питания имеет меньшую мощность в сравнении с запиткой его от автомобильного аккумулятора, но это понятно – напряжение на конденсаторах не превышает 10,1 В, а во время увеличения нагрузки на валу ещё дополнительно уменьшается. Кстати, прилично «теряется» на питающем проводе длиной около 2 метров, даже применяя его сечением 1,77 кв.мм. Для проверки падения на проводе была собрана схема по рисунку 14 , в ней контролировалось напряжение на конденсаторах и напряжение падения на одном проводнике питающего провода. Результаты в виде графиков при разных нагрузках показаны на рисунке 15 . Здесь в левом канале – напряжение на конденсаторах, в правом – падение на «минусовом» проводе, идущем от выпрямительного моста к конденсаторам. Видно, что во время остановки головки шуруповёрта рукой, напряжение питания просаживается до уровней ниже 5 В. На шнуре питания при этом падает примерно 2,5 В (2 раза по 1,25 В), ток носит импульсный характер и связан с работой выпрямительного моста (рис.16 ). Замена шнура питания на другой, с сечением около 3 кв.мм привела к повышению нагрева диодов и трансформатора, поэтому вернули назад старый провод.

Посмотрели ток в цепи между конденсаторами и самим шуруповёртом, собрав схему по рисунку 17 . Получившийся график – на рисунке 18 , «лохматость» - это пульсации 100 Гц (то же, что и на предыдущих двух рисунках). Видно, что пусковой импульс превышает значение 20 А – скорее всего, это связано с меньшим внутренним сопротивлением источника питания за счёт использования параллельного включения конденсаторов.

В конце замеров посмотрели ток через диодный мост, включив между ним и одним из выводов вторичной обмотки резистор 0,1 Ом. График на рис.19 показывает, что при торможении двигателя ток достигает значения 20 А. На рис.20 – растянутый по времени участок с максимальными токами.

В результате, пока решили поработать с шуруповёртом с описанным блоком питания, если же будет "не хватать мощности", то придётся искать более мощный трансформатор и ставить диоды на радиаторы или менять на другие.

И, конечно же, не стоит воспринимать этот текст как догму - абсолютно нет никаких препятствий для изготовления БП по любой другой схеме. Например, трансформатор можно заменить на ТС-180, ТСА-270, или можно попробовать запитать шуруповёрт от компьютерного импульсного БП, но, скорее всего, понадобится проверка возможности отдачи цепи +12 В тока 25-30 А...

Андрей Гольцов, г. Искитим

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Рисунок №8
VD1-VD4 Диод КД2998В 4 В блокнот
C1 Конденсатор 1.0 мкФ 1 400 В В блокнот
C2 Конденсатор 0.47 мкФ 1 160 В В блокнот
C3 Конденсатор электролитический 2200 мкФ 15 16 В

Аккумуляторный шуруповёрт - прекрасный помощник в хозяйстве. Инструмент вместе с мастером работает в доме и в саду, трудится в гараже или в поле. До тех пор, пока не сядет аккумулятор. Количество циклов заряд-разряд у аккумулятора ограничено, батарея портится и от безделья: саморазряд разрушает элементы. В среднем аккумулятор живёт 3 года, после чего его приходится заменять. Спасти инструмент можно, переделав его в сетевой. Переделка выполняется разными способами.

Действительно ли стоит переделывать?

Без аккумуляторов шуруповёрт превращается в железку. Когда батареи перестают держать заряд, приходится искать новые элементы питания. Во-первых, это дорого - цена аккумуляторов составляет до 80% стоимости шуруповёрта, эффективнее купить новый инструмент. Во-вторых, батареи не всегда бывают в продаже, например, если модель снята с производства. В-третьих, рачительный хозяин стремится использовать все возможности для экономии средств.

Переделка аккумуляторного шуруповёрта для работы от электрической сети - хороший выход. Что это даёт:

  1. Инструмент получает новую жизнь.
  2. Больше не нужны батареи, требующие заряда.
  3. Крутящий момент инструмента не зависит от заряда батареи.

Недостаток переделанной конструкции - зависимость от розетки и длины сетевого кабеля.

Внимание! Работы на высоте, превышающей два метра, переделанным шуруповёртом не допускаются.

Как переделать аккумуляторный шуруповёрт для работы от сети 220 Вольт

Мастера придумали несколько способов, чтобы переделать шуруповёрт для работы от электрической сети. Все они заключаются в том, чтобы предоставить мотору требуемое напряжение питания с помощью промежуточного источника или преобразователя.

Таблица: варианты источников питания для сетевого шуруповёрта

Источник питания Достоинства Недостатки
Комплектное зарядное устройство шуруповёрта.
  • Несложная переделка.
  • Используется существующее зарядное устройство.
  • Не требуется подбирать напряжение блока питания.
Зарядное устройство занимает место на столе.
Готовый блок питания, помещённый в корпус старого аккумулятора.
  • Несложная переделка.
  • Не требуется вмешательство в электрическую схему шуруповёрта.
  • Поиск готового компактного блока питания на требуемое напряжение.
  • Блок питания греется в закрытом корпусе, надо делать перерывы в работе.
Самодельный блок питания, помещённый в корпус старого аккумулятора.
  • Красивое инженерное решение - из шуруповёрта выходит только сетевой шнур.
  • Нет потерь в кабеле с низким напряжением.
  • Не требуется вмешательство в электрическую схему шуруповёрта.
  • Требуется подобрать схему и найти радиодетали.
  • Мастер должен иметь опыт пайки, сборки и отладки электрических схем.
Внешний блок питания Несложная переделка.
  • Блок питания занимает место на столе.
  • Нужно найти походящий блок питания.
Блок питания от компьютера
  • Несложная переделка.
  • Компьютерный блок питания легко найти.
  • Подойдёт любой блок питания от 300 Вт.
  • Требуется разбирать шуруповёрт и подключаться к его схеме.
  • Блок питания занимает много места на столе.

Подключение шуруповёрта к зарядному устройству

Внимание! При низком напряжении велики потери в проводе, поэтому кабель между зарядным устройством и инструментом должен быть не длиннее 1 метра, сечением не менее 2,5 кв. мм.

Последовательность действий:

    Припаять или прицепить зажимами «крокодил» к клеммам зарядного устройства два провода.

  1. Разобрать старый аккумулятор и вынуть из него севшие элементы.
  2. Просверлить в корпусе аккумулятора отверстие для кабеля, продеть кабель в отверстие. Желательно уплотнить соединение изолентой или термоусадочной трубкой, чтобы провод не вырвался из корпуса.
  3. Удалённые из аккумулятора элементы нарушат развесовку шуруповёрта - рука будет уставать. Чтобы восстановить баланс, в корпус следует поместить груз - это может быть плотное дерево или кусок резины.
  4. Припаять кабель к клеммам бывшего аккумулятора, подключаемым к шуруповёрту.
  5. Собрать корпус аккумулятора.
  6. Остаётся испытать обновлённый инструмент в работе.

Монтаж готового блока питания в корпусе старого аккумулятора

Внимание! В закрытом корпусе блок питания плохо охлаждается. Рекомендуется проделать отверстия в стенках корпуса. Не работайте инструментом без перерыва дольше 15 минут.

Порядок действий:

  1. Разобрать старый аккумулятор и вынуть из него неработающие элементы.
  2. Установить блок питания в корпус аккумулятора. Подключить контакты высокого напряжения и клеммы низкого напряжения.
  3. Собрать и закрыть корпус аккумулятора.
  4. Установить аккумулятор в шуруповёрт.
  5. Включить вилку блока питания в розетку и проверить обновлённый сетевой инструмент в работе.

Самодельный блок питания

Внимание! Соблюдайте правила электробезопасности. Пайку и подключение проводите при обесточенном устройстве.

Пошаговая инструкция:

  1. Разобрать корпус старого аккумулятора, вынуть из него севшие батареи.
  2. Установить элементы электрической схемы блока питания на монтажную плату, припаять контакты.
  3. Установить собранную плату в корпус. Проверить тестером наличие напряжения на выходе.

    Блок питания в корпусе

  4. Подключить провода низкого напряжения к клеммам старого аккумулятора. Собрать корпус.

    Останется только собрать корпус аккумулятора

  5. Подключить шуруповёрт к электрической сети и проверить его работу.

Видео: самодельный литиевый аккумулятор для шуруповёрта

Подключение к внешнему блоку питания

Внимание! В процессе доработки потребуется разобрать корпус шуруповёрта и вмешаться в электрическую схему. Запомните последовательность разборки, чтобы собрать все части в обратной последовательности.

Что делать:


Подключение к блоку питания от компьютера

Инструкция:

  1. Найти или купить блок питания от компьютера, мощностью не менее 300 Вт.
  2. Разобрать корпус шуруповёрта. Найти внутри провода питания двигателя. Припаять к проводам разъёмы для компьютерного блока питания.
  3. Вывести из корпуса разъёмы для подключения компьютерного блока питания.
  4. Подключить шуруповёрт к новому блоку питания.
  5. Включить блок питания в сеть и проверить работу прибора.

Видео: блок питания для шуруповёрта из компьютерного БП

Как запитать шуруповёрт, сохранив его автономность

Если мастер работает в здании, к которому не подведено электричество, а аккумуляторы уже испортились, есть способы запитать шуруповёрт:

  • заменить старые банки аккумуляторов на новые;
  • подключить шуруповёрт к автомобильному аккумулятору;
  • подключить инструмент к другому аккумулятору, например, взятому от источника бесперебойного питания.

Замена старых элементов

Внимание! Заменяя батареи, обращайте внимание на правильную полярность подключения элементов.

Порядок действий:


Внимание! Заряжать переделанный аккумулятор следует только специально подобранным зарядным устройством.

  • Подсоединить клеммы. Опробовать инструмент в работе.
  • Подключение к внешнему аккумулятору

    Последовательность действий:

    1. Купить или найти внешний аккумулятор, например, взять от ненужного источника бесперебойного питания.
    2. Взять провод сечением не менее 2,5 кв. мм. Снять изоляцию и установить на медные концы зажимные клеммы, подходящие для крепления на аккумуляторе.
    3. Второй конец кабеля поместить в корпус старого аккумулятора и припаять к клеммам, вставляющимся в шуруповёрт.
    4. Вставить корпус аккумулятора в шуруповёрт, подключить кабель клеммами к аккумулятору.
    5. Опробовать восстановленный инструмент в работе.

    Электрический аккумуляторный инструмент служит в несколько раз дольше, чем питающие его батареи. Выбрасывать на помойку шуруповёрт с негодными элементами - неразумно. Настоящий хозяин сможет отремонтировать прибор, переведя его на другой источник питания, тем самым дав ему новую жизнь.

    Аккумуляторный шуруповерт – удобный и необходимый в хозяйстве инструмент. При эксплуатации «от случая к случаю», он может верой и правдой служить многие годы. К сожалению, через 2-3 года, даже при не очень интенсивной эксплуатации, аккумуляторы шуруповерта практически полностью теряют свою емкость. Исправный инструмент, а пользоваться нельзя… Что делать?

    Выбросить и купить новый. Самое разумное решение, если Вы эксплуатируете щуруповерт профессионально. А если он бывает нужен всего лишь несколько раз в году – починить забор, повесить полку и т.п. Рука не поднимается выбросить исправный аккумуляторный шуруповерт. Поиск в Интернете показал, что эта проблема волнует многих. Как же предлагают поступить в данной ситуации экономные россияне и жители братских республик.

    Первое, самое очевидное решение - использовать внешний аккумулятор для питания шуруповерта. Старый автомобильный или герметичный свинцово-кислотный от ИБП. Но проблема в том, что шуруповерт даже на холостом ходу потребляет 1,5…3 А, а под полной нагрузкой потребляемый ток превышает 10 А. Придется использовать либо толстые, либо короткие соединительные провода. И то и другое неудобно. Разве что работать с аккумулятором в рюкзаке…

    Второе решение – сетевой блок питания шуруповерта. Ведь в большинстве случаев работы ведутся в пределах досягаемости электрической розетки. Несколько теряется мобильность, но зато щуруповерт постоянно готов к работе. В качестве блока питания можно использовать обычный трансформатор с выпрямителем. Просто, но тяжело и громоздко. Компьютерный блок питания легче, но проблема с проводами остается. Кроме того, стабилизированный блок питания при работе на коллекторный электродвигатель с резко меняющейся нагрузкой и искрящими щетками может вести себя непредсказуемо.

    Самое разумное, на мой взгляд, смонтировать сетевой блок питания в аккумуляторном отсеке шуруповерта. Кабель питания в этом случае может быть небольшого сечения, гибкий и легкий. При необходимости можно использовать стандартный сетевой удлинитель. Сложность в том, что места в аккумуляторном отсеке очень мало. Тем не менее, задача вполне выполнима. Подобная конструкция описана в журнале «Радио» №7 за 2011г. – К. Мороз. Сетевой блок питания для шуруповерта. Эта статья растиражирована на многих сайтах, но практическая проверка описанной в ней конструкции показала, что электронный трансформатор для галогенных ламп, который предлагает использовать автор, – не лучшее, в данном случае решение.

    Генератор с самовозбуждением на двух транзисторах хорошо работает на активную нагрузку, а вот искрящий коллектор и резко меняющаяся нагрузка – тяжелое испытание для него. В общем, после выгорания нескольких транзисторов я отказался от дальнейших экспериментов с электронным трансформатором.

    Лучшее решение мне удалось найти, на форуме http://forum.easyelectronics.ru/viewtopic.php?f=17&t=1773 . Его предлагает Дмитрий (dimm.electron) - под таким именем он зарегистрировался на форуме. Собранный по предложенной им схеме блок питания предназначен для установки в аккумуляторный отсек шуруповерта на 12 или 14 В, в котором находилось 10 или 12 никель-кадмиевых аккумуляторов. Схема блока показана на рисунке.

    Учитывая, что это должна быть простая и дешевая конструкция «выходного дня» я слегка доработал авторский вариант. С целью экономии места исключил сетевой фильтр. Это конечно плохо, но учитывая, что пользоваться шуруповертом планирую не часто, и в основном вдали от радиоаппаратуры, вполне допустимо. Не хватило места также и для резистора, ограничивающего зарядный ток конденсаторов в момент включения в сеть. Тоже не очень хорошо, но оправдания те же самые…

    В схеме максимально использованы детали от старого компьютерного блока питания. Это выпрямительный мостик VD1, конденсаторы C1, C2, трансформатор T1 и диодная сборка VD4. Силовые транзисторы тоже можно использовать от компьютерного блока питания, но они должны быть обязательно полевыми. В моем блоке они оказались биполярными, пришлось приобрести рекомендованные автором IRF840.

    Еще одно упрощение – использование обычного выпрямителя VD4 на диодах Шоттки, вместо предлагаемого автором «хитрого» синхронного выпрямителя. Замечу, что необходимо использовать диодную сборку именно из диодов с барьером Шоттки. Отличить ее от обычной можно, если измерить мультиметром в режиме прозвонки прямое падение напряжения на диодах. На диодах Шоттки падает не более 0,2 В, тогда как на обычных диодах около 0,6 В. Учитывая ограниченные размеры радиатора нагрев обычных диодов будет недопустимым.

    Ну и, наконец, питание микросхемы DD1 осуществляется через обычный гасящий резистор R3. Автор использует для этого еще одну «хитрую» схему – питание берется с точки соединения транзисторов VT3, VT4 через гасящий конденсатор и дополнительный выпрямитель на диодах. Сложно в наладке – надо довольно точно подбирать емкость конденсатора, он должен быть высоковольтным и термостабильным. Есть вероятность сжечь DD1.

    В процессе обсуждения на форуме родился еще один вариант схемы питания – с дополнительной обмотки трансформатора. Это самый лучший вариант, бесполезный нагрев элементов минимален. Но на трансформаторе нужна дополнительная изолированная обмотка на 20-30 В.

    Трансформатор – это самый важный элемент схемы блока питания шуруповерта, от качества его изготовления на 90% будет зависеть Ваше мнение об умственных способностях автора разработки. Если использовать первое попавшееся ферритовое кольцо неизвестной марки, ничего хорошего не получится. Кроме магнитной проницаемости у феррита есть и другие параметры, которые очень важны в данном случае. Необходимо использовать специально предназначенный для работы в сильных магнитных полях феррит, например от трансформаторов импульсных блоков питания компьютеров, телевизоров и др. аппаратуры мощностью не менее 200 Вт. Технология намотки тоже очень важна, автор подробно описывает, как должны быть расположены обмотки на сердечнике.

    Я поступил проще – использовал готовый трансформатор от старого компьютерного блока питания. Он как раз подходит по всем параметрам. Лучше раскурочить старый блок мощностью 200-250 Вт, в нем высота трансформатора равна 35 мм – как раз помещается в аккумуляторном отсеке. Трансформаторы от более мощных блоков имеют большую высоту и не помещаются в моем корпусе.

    Перед выпаиванием трансформатора нужно внимательно рассмотреть, как соединяются его обмотки и с каких выводов запитан выпрямитель +5 В. Тут возможны варианты, может потребоваться небольшая коррекция чертежа печатной платы блока питания шуруповерта. Обращаю внимание, что используется именно 5-и вольтовая обмотка, амплитуда напряжения на ней как раз около 12 В. Другие обмотки не используются.

    А вот намотать на такой трансформатор дополнительную обмотку или изменить число витков существующих, к сожалению не получится. Трансформатор залит эпоксидкой и при его разборке велика вероятность сломать сердечник.

    В микросхеме IR2153D между выводами 1 и 4 установлен стабилитрон на 15,6 В, поэтому питание нужно подавать обязательно через токоограничивающий резистор. Показанный на схеме пунктиром диод VD5 необходим только при использовании IR2153 без индекса «D». Конденсаторы C1, C2 можно заменить одним – 100…150 МК, 400 В. При его приобретении определяющий параметр – высота, желательно не более 35 мм, иначе может не поместиться в корпус.

    Резистор R3 составлен из 4-х последовательно включенных по 8,2К, 2 Вт. Его номинал желательно подобрать при наладке так, чтобы при минимально возможном напряжении в сети, напряжение на конденсаторе C4 не падало ниже 11 В. Для уменьшения бесполезного нагрева номинал этого резистора должен быть максимально возможным, если его уменьшить, просто увеличится ток через этот резистор и внутренний стабилитрон микросхемы.

    Элементы R5, R6, VD2, VD3, VT2, VT4 защищают полевые транзисторы от пробоя в случае аварийных режимов работы. Номинал C9 увеличивать не следует, т.к. это увеличит и без того большой бросок тока при включении в сеть. Мостик VD1 должен выдерживать ток не менее 5 А при напряжении 400 В. VD4 – сборка из диодов Шоттки с допустимым током не менее 30А. VD1 и VD4 отлично подходят от компьютерного блока питания. Вентилятор на 12 В, его внешние размеры 40х40 или 50х50 мм. Элементы в корпусах для поверхностного монтажа типоразмеров 0805 или 1206. DD1 в DIP корпусе, обратите внимание на надежность изоляции на плате между выводами 5 и 6.

    Чертеж печатной платы показан на рисунке, вид со стороны печатных проводников. Перед ее изготовлением нужно разобрать имеющийся аккумуляторный отсек шуруповерта и убедиться, что плата в него вписывается. Скорее всего потребуется небольшая коррекция, т.к. отсеки у разных производителей имеют небольшие конструктивные отличия.

    Силовые транзисторы VT1, VT3 и диодная сборка VD4 монтируются на небольших алюминиевых пластинках. Их габариты – по месту. В корпусе необходимо просверлить вентиляционные отверстия. Вентилятор придется разместить снаружи корпуса – без него длительная работа не гарантируется. Естественной вентиляции в данном случае недостаточно. И не забудьте про предохранитель FU1.

    При первом включении блок лучше запитать от источника питания 20-25 В с током 100…200 МА. При этом резистор R3 временно шунтируется другим, с номиналом 1К. Если все нормально, на выходе будет 0,6…1 В. Можно посмотреть форму и частоту импульсов на вторичной обмотке трансформатора. Там должны быть прямоугольные импульсы со скважностью 50% и частотой 50…100 КГц. Частота определяется номиналами R4, C5.

    Если все нормально, убираем временно установленный резистор 1К, включаем последовательно с блоком питания шуруповерта лампу накаливания на 60…100 Вт и включаем все это в сеть. В момент включения лампа кратковременно вспыхнет и погаснет, на выходе должно установиться напряжение около 12 В. Если все работает, убираем лампу и проверяем работу блока под нагрузкой около 1 Ом. Наконец, выбрасываем аккумуляторы, устанавливаем блок питания в корпус и проверяем работу шуруповерта в разных режимах.

    Если эта конструкция Вас заинтересовала, можете ознакомиться с вариантами схемы от автора и его рекомендациями по самостоятельному изготовлению трансформатора. Также доступны для скачивания два моих варианта чертежа печатной платы в Sprint Layout.